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ABSTRACT 
A method has been developed for the solution of inverse heat diffusion problems to find the initial condition, 
boundary condition, and the source and sink function in the heat diffusion equation. The method has been 
used in the development of a source-and-sink method to find the boundary conditions in inverse Stefan 
problems. Green's functions have been used in the solution, and the problems are solved by using two 
approaches: a series solution approach, and a time incremental approach. Both can be used to find the 
boundary conditions without reliance on the flux information to be supplied at both sides of the interface. 
The methods are efficient in that they require less equations to be solved for the conditions. The numerical 
results have shown to be accurate, convergent, and stable. Most of all, the results do not degrade with 
time as in other time marching schemes reported in the literature. Algorithms can also be easily developed 
for the solution of the conditions. 
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INTRODUCTION 

Inverse solution techniques have received much attention in recent years. For example, in the 
solution of heat diffusion problems, the regular problems have been those that solve the 
temperature field in a system domain in which the heat transfer is governed by a specified 
diffusion process and subjected to given initial and boundary conditions. As for the inverse 
problems, the roles of known and unknown quantities are exchanged. Extra temperatures are 
usually given either at the boundary or at interior points, and these temperatures are used 
together with the other conditions to solve for the unknowns, including the initial condition1, 
boundary conditions2, boundary positions3, heat source or sink functions4, and even the 
properties in the heat diffusion equation5. These problems are ill posed, and the solution 
techniques developed for them have found to be highly useful in that they are even applicable 
to the solution of certain types of regular problems which are difficult to solve in their traditional 
forward approach; see Reference 6 for example. 

There have been numerous efforts developed in the literature for the solution of the regular 
problems. Solution of the inverse problems, however, is a more recent endeavour; not many 
methods have been developed and those in use may not be sufficiently effective in the sense that 
their accuracy may not be high or their solution may hinge on the supply of extra conditions 
for input. It is thus the purpose of this paper to develop a solution technique that is effective 
and easy to implement numerically. It will be applied to the solution of one- and two-phase 
Stefan problems in which the interface motion is specified, and the problems are solved for the 
boundary conditions that provide for this interface motion. Such problems are found in a variety 
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of engineering applications. For example, in metallurgy or heat treatment process, the mechanical 
properties of a cast or heat treatment body are determined by the rate of motion of the 
solidification interface7. The inverse problems are also important in the enhancement of the 
strength of fusion welding8, control of the surface coating in fluidized beds9, and prediction of 
the biological tissue destruction and preservation in freezing-thawing cycles10, among others. 

MOTIVATION 

Heat diffusion in a medium with constant properties is governed by the partial differential 
equation: 

where all notations have their usual meaning. For this medium, the conditions imposed on the 
boundary are usually one of the following types: 

which represent the familiar Dirichlet, Neumann, and Robin conditions, respectively. In (3) and 
(4), ni denotes an outward drawn normal. Then, with the additional initial condition given as: 

the temperature can be solved by means of Green's function as11: 

Here, the braced term is used to account for the three boundary conditions given earlier. Their 
expressions are listed in Table 1. 

A distinct feature is found in the Green's function method above—the effects of the initial 
condition, heat generation (or destruction), and boundary conditions are embodied respectively 
in the first, second, and third terms on the right of (6). Then, in the case of regular problems, 
once these conditions are fully specified, the temperature can be easily found. In this effort, the 
Green's function can be obtained by using the concept of point charges11 or by solving auxiliary 
problems12. 

Table 1 Expressions to account for effects of boundary conditions 

Boundary condition { } Expression 
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As it turns out, the format of (6) is particularly suited for the solution of the inverse problems. 
For the inverse problems, the left hand side of this equation can be used to represent the extra 
temperature that is provided either at the boundary or at an interior point. This temperature 
can then be used to determine the missing information, such as the initial condition, heat 
generation, or boundary conditions. In these efforts, the missing quantities can be expanded 
either in a polynomial or an infinite series, which is substituted into their respective integrals 
in (6). The resulting equation is then solved numerically for the coefficients in the series to 
complete the solution. This method clearly works for the initial condition and the heat generation. 
However, for the boundary condition, since it is unknown a priori, one must first assume a 
particular 'type' of condition that is imposed on the boundary. For convenience, one could use 
(2) or (3) for this condition. Green's function is then found with this assumed condition. Notice 
that the boundary condition can be exchanged if necessary as shown in Reference 13. That is 
to say, a Dirichlet condition can be accomplished by means of a Neumann condition and vice 
versa. The search for the condition is thus not restricted by the type of the conditions assumed. 
Better yet, an incremental solution approach can be developed to track the boundary conditions 
accurately as will be shown later. The concept above will now be applied for the solution of 
inverse Stefan problems in which the interface positions are given, and these positions are used 
to find the boundary conditions that must be imposed to cause the interface motions. 

GENERAL ANALYSIS 

For the sake of illustration in what follows, the Stefan problems consist of two stages: a pre-melt 
stage, when heat is added to the surface of a subcooled medium to raise its temperature to the 
phase-change temperature; and a melting stage, when the medium changes phase and the melting 
starts at the surface and the interface moves inward with time. It is assumed that the properties 
for different phases are constant and of equal values. The medium has a distinct melting 
temperature; that is, no mushy zone in the medium. Convection is negligible. For generality, 
the analysis will be developed for the solution of both melting and solidification problems. The 
analysis can also be extended for the solution of Stefan problems in multiple phases and in a 
medium with unequal phase properties as will be discussed later. For the moment, the simplified 
problems will be solved by considering the medium shown in Figure 1. The formulation of these 
problems follows below. 
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Pre-melt stage 
Governing equation: 

Initial condition: 

Melting stage 
Liquid region: 
Governing equation: 

Solid region: 
Governing equation: 

Initial condition: 

Interface conditions: 

Here denotes the interface position and vn the history of the interface motion. For the inverse 
Stefan problems of interest in this study, this history is used for the determination of the missing 
boundary conditions. 

The problems as posed can be solved by use of the Green's function method described in the 
preceding section. However, a direct use of this method would require (6) to be applied to two 
separate regions, liquid and solid, and the solution so obtained may not be as efficient as one 
desires. A source and sink method is thus used14−16. In this method, the melting interface is 
taken to be a moving heat-sink front and a freezing interface is taken to be a moving heat-source 
front. Then, in sharp contrast to the conventional methods in which different equations are used 
to represent the temperatures in different regions, only one equation will be derived. Whether 
it is in the solid or liquid region is determined by the position that is assigned in the temperature 
equation. The solution of the inverse problems can then be simplified with this method. Following 
this approach, the melting stage is solved by considering an equivalent problem as follows. 

Governing equation for the equivalent problem: 

Initial condition for the equivalent problem: 
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Interface conditions for the equivalent problem: 

where denotes a Dirac delta function. The signs preceding this function are used for 
freezing (+ ) and melting ( − ) . 

It can be shown readily that (15) reduces to (9) and (10). Furthermore, by integrating (15) 
across the interface from and forcing e to be zero in a limiting process, (15) 
reduces to (13). This can be proved by using the pill box at the interface in Figure 1. Other 
equivalences for the melting stage are apparent. 

The equivalent problem can be solved by referring to (6) in which the heat generation term 
is changed to the interface motion term as: 

where the plus sign is used for freezing and minus sign for melting. Finally, the boundary 
conditions can be found by setting in this equation to the interface position, 
to the melting temperature, Tm, as: 

The missing boundary conditions can then be found by solving them implicitly. In this effort, 
the time when melting starts (t0) can be determined by solving the pre-melt problem, whose 
solution can again be taken to be the special case of (6) in which the heat generation term is 
zero. Solution in this stage is thus elementary. 

EXAMPLES 

The analysis above is now used to solve example problems which are in semi-infinite domain 
in which the interface motion is given. For the sake of generality, the analysis will be developed 
for determining either the Dirichlet condition or the Neumann condition that is imposed on the 
boundary at x = 0, and the interface motion may be the result of either melting or solidification 
in a one- and two-phase medium. Also for illustration purposes, the heat flow is one-dimensional, 
the initial temperature being uniform. Extensions to more dimensions are provided in the 
Appendix. 

For the problem given, Green's function can be found to be: 

where the plus and minus signs are to be used when the flux and temperature condition is 
assumed to appear at the boundary, respectively. The temperature can then be obtained by 
using (18), which is recast in a general format as: 

where all temperatures, including Tm, are measured in excess of the initial temperature, and 
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in which 

Here F(s) and G(s) denote respectively the temperature and heat flux condition sought. Also 

where Ste is known as the Stefan number. With the use of the circumflexed Heaviside function 
given by (24), (21) holds for all time and for both one- and two-phase problems. 

Equation (21) can be used to determine the unknown boundary condition by invoking use 
of the condition at the interface as: 

where the plus and minus signs on the left hand side are to be used for freezing and melting, 
respectively. 

NUMERICAL SOLUTION 

A local linearization can be used to solve (26) numerically. In this effort, the entire time range 
is divided into small increments in which the interface position is taken to be linear (see Figure 
2). Then dR/dt can be taken out of the integral for each increment, and the convolution integral 
written as a summation as: 

Here the signs are to be selected following the statement below (26). For the inverse Stefan 
problems, the right-hand side can be evaluated with the input of the interface motion data. As 
for the left-hand side, if the boundary conditions are represented by a power series, then the 
number of terms on this side must be equal to the number of the terms that are taken in the 
series. In practice, (27) can be written by means of matrix elements for a melting problem for 
the series method as: 

where m = N; tN > t0; N = 1, 2, . . . , N; and 
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Notice that the integrals in these equations can be performed in closed form if the missing 
conditions are expressed in the power series as shown in (29) or in terms of a Fourier series. 
The coefficient matrices B and D are of a lower triangular structure, a characteristic permitting 
the solution of (28) to be carried out simply by using forward substitution, a simple numerical 
procedure. 

The boundary conditions can also be determined by use of an incremental approach. In this 
method, (27) is recast as: 

where t0 is set to zero all the time for the integral on the left and the last integral on the right. 
In practice, (33) can be recast as: 
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where tN > t0; N = 1, 2, . . . , N; dNn can be obtained by referring to (31); and 

In (34), the summation vanishes when N — 1 = 0. Then starting from N = 1, 2, and so on, the 
conditions can be evaluated incrementally. In this effort, the F and G values found from the 
previous time steps are used as input in the computation of the right-hand side of (34), which 
immediately gives the F and G values for the succeeding new time step. This continues until the 
desired time is reached. The algorithms can be developed for a rapid solution of the conditions. 

CRITIQUE OF THE METHOD 

Using Green's functions, the present method is limited to the solution of problems whose Green's 
function can be obtained analytically. This excludes those problems whose boundary conditions 
and governing equations are non-linear and such non-linearity cannot be resolved by using 
transformation (e.g. Kirchhoff transformation). Yet with the use of Green's function, it projects 
an impression of being related to the boundary element method that has been undergoing 
thorough development in recent years17. Yet, they are functionally different. In the boundary 
element method, the boundary element equations are written separately for the liquid and solid 
regions, whereas in the present method, only one equation (27) is derived. The number of the 
equations to be solved in the present method is thus reduced by half, which is particularly true 
in the solution by the incremental approach described earlier. 

More important, in the boundary element method, the problems cannot be solved without 
the information for the heat fluxes that appear on both sides of the interface17, 18. Such fluxes, 
however, are unnecessary for solution in the present work. Instead, (26) embodies conditions 
(12) and (13) in the form of a single integrodifferential equation. There is no need for the 
satisfaction of the flux conditions; as a result, the present method is more effective because it 
requires less information for input. 

As will be shown in the next section, the present method is also accurate. In fact, such accuracy 
is not unexpected because (26) is exact. The only approximation in the analysis is the local 
linearization which has been applied to the interface motion and the boundary condition; see 
(33) and (35). In fact, in the present analysis, they have been approximated by using constant 
elements. The analysis can be improved for accuracy by using higher order elements, such as 
linear and quadratic elements as in References 3 and 19. 

RESULTS AND DISCUSSION 

For the numerical experiments performed in this study, the interface motion data are taken from 
Reference 20. Aluminium will be used for tests; its melting point is 932 K. The inverse solution 
techniques developed in this paper are used to solve six example problems of which four having 
exact solutions. The retrieved conditions for these examples can thus be compared with the 
exact solutions for error. In these four examples, the interfaces move as a function of square 
root of time, and the interface motion data are used to retrieve the constant temperature 
conditions that appear on the surface. This problem is known as the Stefan-Neumann problem, 
and Table 2 provides a summary of the conditions tested in all the examples. 

The first example deals with a general two-phase Stefan-Neumann problem; the medium is 
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Table 2 Conditions tested in six examples 

Problem description 

1 

2* 

3 

4* 

5 

6 

two-phase 
Ti = 300 K < Tm 

two-phase 
Ti = 300 K < Tm 

one-phase 
Ti = 932 K = Tm 

one-phase 
Ti = 932 K = Tm 

one-phase 
Ti = 932 K = Tm 

two-phase 
Ti = 300 K < Tm 

Input data 

R(t)~ 

R(t)~ 

R(t)~ 

R(t)~ 

Reference 20 

Reference 20 

True condition 
F(t) ( K ) ; G ( t ) ( W / m 2 ) 

F ( t ) = 1000 

F( t ) = 1000 

F(t) = 1000 

F ( t ) = 1000 

F(t) = 1000 + 5t 

G(t) = 6.39 x 106 

+ 2.8229 x 105t 

Type of boundary condition 

Assumed 

temperature 

heat flux 

temperature 

heat flux 

temperature 

heat flux 

Solved 

temperature 

temperature 

temperature 

temperature 

temperature 

heat flux 

* This example serves to show that the results obtained are independent of the condition initially assumed 

initially subcooled to 300 K, which is lower than the melting temperature (see Table 2). For 
this example, the temperature at the boundary is unknown; an unknown temperature is thus 
assumed to appear at the boundary, and the interface motion data are used to find this 
temperature. The results are listed in Table 3, where two sets of results are given—one for the 
series solution method and the other for the incremental solution method. 

In the series solution method, a power series of degree N — 1 is used to represent the 
temperature (see (29b)), and two values of N are tested. In this method, the interface position 
data at equal time intervals are used for input. Thus, for example, for N = 3, R data at times 
equal to 0, 6, 12, and 18 sec are used to determine the series, which is, in turn, used to generate 
the temperature values listed for 20 time steps in the Table. Comparing the retrieved temperatures 
at the boundary by both of the series with the true condition (exact temperature) listed to the 
left indicates they are in good agreement. In this case, the coefficients found for these series are 
listed at the bottom of the Table. From the temperature values tabulated, the results for the 
low power series appear to be as good as those of the high power series, and such trend persists 
even with the test of a higher power series of degree 10 (results not shown). This gives the 
indication that the temperatures have been converged. As for the incremental solution method, 
the results are also good; errors are of the order of 10 -3% at large time. For the incremental 
method, the boundary conditions are found at exactly the same times when the interface positions 
are given. The time step for the solution is thus identical to that for the interface data input. 
Also notice that the convergence and stability that are normally encountered in the conventional 
finite difference methods are non-existent in the present incremental solution of integral equations. 
Also as in the case of the series solution method, the incremental solution results are generally 
better at large time than small time, which will be further discussed later. 

In the example above, a temperature condition is imposed, and the same 'type' of condition 
is assumed in the process of the inverse solution. Since the type of the condition that is imposed 
on the boundary is unknown a priori, it may well be the heat flux condition that one assumes, 
and the question to be addressed now is whether it is still possible to retrieve the temperature 
condition via the assumed flux condition. Use will now be made of (21) to determine this 
temperature condition once the boundary flux condition is found, and the results are listed in 
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Table 3 Comparison between true and retrieved conditions for first Stefan-Neumann example problem solved for 
boundary temperature 

Time (sec) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Imposed 
true condition 

1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 

N = 3 

1003.22 
1002.97 
1002.72 
1002.48 
1002.25 
1002.03 
1001.82 
1001.61 
1001.42 
1001.23 
1001.06 
1000.89 
1000.73 
1000.58 
1000.43 
1000.30 
1000.17 
1000.06 
999.95 
999.85 

Boundary conditions, T (K) 

Retrieved 

Series method 

N = 4 

1003.17 
1002.87 
1002.58 
1002.30 
1002.04 
1001.79 
1001.56 
1001.34 
1001.14 
1000.95 
1000.78 
1000.63 
1000.50 
1000.38 
1000.28 
1000.20 
1000.14 
1000.09 
1000.07 
1000.07 

Incremental 
method 

1003.49 
1000.41 
1000.20 
1000.11 
1000.03 
1000.05 
1000.04 
1000.02 
1000.68 
999.88 
999.97 
999.99 
999.99 
999.99 
999.99 
999.98 
999.98 
999.98 
999.90 
999.94 

Table 4. As shown in the Table, the incremental solution results are still good but the series 
solution results are not as accurate as those listed in Table 3. This is certainly a result of the 
errors being accumulated first in the evaluation of the heat flux next in the evaluation of the 
temperature using the previously determined heat flux. While this example serves well to illustrate 
that the conditions are still exchangeable, such a two-step solution of the condition may lead 
to large errors, particularly in the series solution method and should thus be avoided in practice. 
In fact, according to experience, the computer time saved in this two-step approach of solving 
flux then temperature is insignificant as compared with that in the separate, one-step approach 
of direct evaluation of the flux and temperature. 

A slight modification is made in the next two examples: this time the medium is not subcooled, 
the initial temperature being equal to the melting temperature of the medium (see examples 3 
and 4 and Table 2). The Stefan-Neumann problems solved thus become a one-phase problem. 
It will be tested that the results are unaffected by the change to the one-phase problem. Again, 
the same series of tests are made and the results are listed in Tables 5 and 6. Again, the one-step 
solution results are good (Table 5). The two-step solution results are poorer (Table 6), further 
reinforcing the recommendation made earlier in the testing of the two-phase problems. 
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Table 4 Comparison between true and retrieved conditions for second Stefan-Neumann example problem solved for 
boundary flux then temperature 

Time (sec) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Imposed 
true condition 

1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 

N = 4 

585.89 
715.58 
799.99 
862.06 
909.11 
945.07 
972.34 
992.57 

1006.96 
1016.46 
1021.85 
1023.76 
1022.76 
1019.34 
1013.95 
1007.01 
998.89 
989.95 
980.54 
971.00 

Boundary conditions, T (K) 

Retrieved 

Series method 

N = 5 

620.85 
758.46 
844.90 
905.50 
948.70 
979.11 
999.67 

1012.44 
1019.03 
1020.76 
1018.76 
1014.02 
1007.48 
999.99 
992.40 
985.51 
980.13 
977.04 
977.04 
980.93 

Incremental 
method 

1023.06 
1007.71 
1003.60 
1000.88 
1000.04 
999.68 
999.52 
999.44 
998.11 
998.30 
998.37 
998.44 
998.51 
998.59 
998.66 
999.45 
999.16 
999.11 
999.07 
997.15 

Having satisfactorily completed testing of the Stefan-Neumann problems, attention is now 
directed to the solution of inverse Stefan problems whose interface motions must be met by the 
imposing time-variant temperature and flux conditions. There are no exact solutions for these 
problems, and the interface motion data are taken from Choi20 who have solved the regular 
(forward) version of the problems with great accuracy. The interface position data are then 
used to retrieve the boundary conditions and the results are listed in Tables 7 and 8. Table 7 
gives the results for the direct retrieval of the linear temperature condition: 

F(t) = 1000 + 5t (36) 
while Table 8 gives the results for the direct retrieval of the linear flux condition: 

G(t) = 6.39 x 106 + 2.8229 x 105 (37) 
As described in Table 2, those in Table 7 are for the medium initially at the phase change 
temperature, while those in Table 8 are for the medium initially subcooled at 300 K. The former 
is thus a one-phase problem while the latter is a two-phase problem. Again both series and 
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Table 5 Comparison between true and retrieved conditions for third Stefan-Neumann example problem solved for 
boundary temperature 

Time (sec) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Imposed 
true condition 

1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 

N = 3 

1033.83 
1030.31 
1026.93 
1023.69 
1020.59 
1017.63 
1014.81 
1012.13 
1009.59 
1007.19 
1004.93 
1002.81 
1000.82 
998.98 
997.28 
995.71 
994.29 
993.00 
991.86 
990.85 

Boundary conditions, T (K) 

Retrieved 

Series method 

N = 4 

1033.12 
1028.96 
1025.01 
1021.29 
1017.80 
1014.55 
1011.55 
1008.81 
1006.33 
1004.13 
1002.21 
1000.57 
999.23 
998.20 
997.47 
997.07 
997.00 
997.26 
997.87 
998.82 

Incremental 
method 

1037.49 
998.22 
998.58 
998.85 
999.05 
999.20 
999.24 
999.38 
999.44 
999.49 
999.53 
999.59 
999.60 
999.65 
999.65 
999.69 
999.69 
999.73 
999.71 
999.78 

incremental solution methods are used for solution and their results are good. For example in 
Table 7, the series solution results converge even with a value of N that is as low as 3, whereas 
in seeking the flux condition in Table 8, the series converges rapidly from N = 4 to N = 5 (higher 
degree results not shown). In Table 7 the medium melts as soon as the boundary condition is 
imposed, whereas in Table 8 the medium starts to melt at time greater than 4 sec. In either case, 
the accuracy of the results appears to be unaffected by the time when melting takes place. Other 
examples are given in Reference 25. Tests for the time variant conditions are thus successful. 

The inverse solution techniques developed in this paper are expected to be accurate as 
mentioned earlier that is close to the end of the previous section. Yet for the Stefan problems 
solved in this paper, the accuracy of the techniques is better at large time than small time. This 
can be attributed to the curvature of the interface position curve, which is usually large at small 
time15 (see Figure 2). Then, in the numerical solution of (27), there will be a slight error 
associated with the linearization of the position at small time. At large time, however, the position 
curve tends to be linear; the linearization error will be diminished. In fact, as time progresses, 
the accurate terms under the summation in (27) rapidly outnumber the inaccurate terms to the 
effect that the boundary conditions can always be evaluated accurately with the present method 
at large time; see the results in Tables 3 through 8. This is a distinct departure from the trends 
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Table 6 Comparison between true and retrieved conditions for fourth Stefan-Neumann example problem solved for 
boundary flux then temperature 

Time (sec) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Imposed 
true condition 

1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 

N = 4 

906.32 
953.87 
980.48 
997.67 

1008.95 
1016.02 
1019.89 
1021.28 
1020.73 
1018.66 
1015.44 
1011.39 
1006.79 
1001.89 
996.94 
992.16 
987.77 
983.98 
980.99 
979.00 

Boundary conditions, T (K) 

Retrieved 

Series method 

N = 5 

917.43 
966.25 
991.90 

1006.84 
1015.10 
1018.67 
1018.86 
1016.61 
1012.66 
1007.67 
1002.18 
996.73 
991.80 
987.87 
985.38 
984.80 
986.56 
991.12 
998.92 

1010.41 

Incremental 
method 

1056.39 
996.60 

1002.26 
999.33 
999.70 
999.45 
999.16 
999.22 
999.09 
999.23 
999.05 
999.32 
998.89 
999.72 
998.27 

1001.19 
994.04 

1014.19 
951.97 

1162.46 

of other time marching schemes reported in the literature in which the errors tend to grow with 
time. It should also be pointed out that, for the Stefan-Neumann problem chosen for comparison 
in the present study, there is a singularity of the temperature at zero time. This also contributes 
to the large discrepancy of the results at small time, which must not be overlooked. 

It has been firmly established that, in the solution of the Stefan problems, only the 
Stefan-Neumann problems can be solved exactly. Yet, it is also possible to develop an exact 
solution for an exponential condition imposed on the boundary; such condition, however, has 
been considered as physically untenable in the literature21. Worse yet, such a condition gives 
rise to a constant velocity of the interface, a situation making the present linearization scheme 
exact in the solution of the inverse problems20. Perfect results will be obtained, rendering the 
test of the exponential conditions meaningless. 

EXTENSION AND CONCLUDING REMARKS 
The analysis developed in this paper can be readily extended for the solution of inverse problems 
with multiple phases. For such problems, times for re-melt and re-freeze of the medium must 
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Table 7 Comparison between true and retrieved conditions for fifth example problem solved for boundary temperature 

Boundary condition, T (K) 

Time 
(sec) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Imposed 
true 
condition 

1005 
1010 
1015 
1020 
1025 
1030 
1035 
1040 
1045 
1050 
1055 
1060 
1065 
1070 
1075 
1080 
1085 
1090 
1095 
1100 

N = 3 

1073.05 
1064.27 
1056.80 
1050.64 
1045.81 
1042.29 
1040.09 
1039.21 
1039.64 
1041.40 
1044.47 
1048.86 
1054.56 
1061.59 
1069.93 
1079.58 
1090.56 
1102.85 
1116.47 
1131.39 

Retrieved 

Series method 

Error (%) 

6.77 
5.37 
4.11 
3.00 
2.03 
1.19 
0.49 
0.07 
0.51 
0.81 
0.99 
1.05 
0.97 
0.78 
0.47 
0.03 
0.51 
1.17 
1.96 
2.85 

N = 4 

1078.13 
1061.16 
1048.37 
1039.36 
1033.71 
1031.04 
1030.94 
1033.01 
1036.86 
1042.07 
1048.26 
1055.02 
1061.95 
1068.65 
1074.72 
1079.77 
1083.38 
1085.17 
1084.72 
1081.65 

Error (%) 

7.28 
5.07 
3.29 
1.90 
0.85 
0.10 
0.39 
0.67 
0.78 
0.75 
0.64 
0.47 
0.29 
0.13 
0.02 
0.02 
0.15 
0.44 
0.94 
1.67 

Incremental 
method 

1003.61 
1007.83 
1012.50 
1017.33 
1022.27 
1027.17 
1032.24 
1037.26 
1042.29 
1047.31 
1052.35 
1057.36 
1062.38 
1067.38 
1072.39 
1077.40 
1082.37 
1087.50 
1092.06 
1098.80 

Error 
(%) 

0.13 
0.21 
0.24 
0.26 
0.26 
0.27 
0.26 
0.26 
0.25 
0.25 
0.25 
0.24 
0.24 
0.24 
0.24 
0.23 
0.24 
0.22 
0.26 
0.10 

be closely accounted for, and the analyses described in References 16 and 22 can be readily 
adapted for the development of the inverse solution techniques presented in this paper. The 
present analysis can also be extended for the solution of inverse problems in which the properties 
are unequal for different phases of the medium. For such problems, double source and sink 
fronts must be used as given in the solution of the regular problems in Reference 23. Finally, it 
is noted that although problems in one-dimensional, semi-infinite domain have been solved for 
examples in this paper, problems in finite domains (e.g. plane walls) can also be solved with 
the present methods. For these problems, there are two boundaries and two boundary conditions 
are imposed. Two unknowns are thus sought simultaneously, and this requires the input of one 
additional condition in the form of either temperature or heat flux at any interior point close 
to the boundary where no phase change takes place. On the other hand, for problems with two 
phase-change interfaces caused by separate heat input simultaneously from both sides of the 
boundaries, the interface motion data for the second interface will serve as this additional 
condition. In any event, no flux information is needed at both sides of the interfaces. Furthermore, 
the present methods can also be applied to the solution of problems in multiple dimensions. 
Again the inverse solution for these problems can be developed on the basis of the solution of 
the regular (forward) versions of these problems. Solutions of the regular, two-dimensional 
Stefan problems by the source-and-sink method have been given in Reference 26. 
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Table 8 Comparison between true and retrieved conditions for sixth example problem solved for boundary heat flux 

Boundary condition, q (W/m2) 

Time 
(sec) 

4.25 
4.50 
4.75 
5.00 
5.25 
5.50 
5.75 
6.00 
6.25 
6.50 
6.75 
7.00 
7.25 
7.50 
7.75 
8.00 
8.25 
8.50 
8.75 
9.00. 

Imposed 
true 
condition 

7589730.94 
7660418.94 
7731106.94 
7801794.94 
7872482.94 
7943170.94 
8013858.94 
8084546.94 
8155234.94 
8225922.94 
8296610.94 
8367298.94 
8437986.94 
8508674.94 
8579362.94 
8650050.94 
8720738.94 
8791426.94 
8862114.94 
8932802.94 

N = 4 

8076200.72 
8147001.48 
8206716.05 
8257180.74 
8300231.83 
8337705.60 
8371438.35 
8403266.35 
8435025.90 
8468553.29 
8505684.79 
8548256.71 
8598105.32 
8657066.91 
8726977.77 
8809674.19 
8906992.45 
9020768.84 
9152839.65 
9305041.17 

Series method 

Error (%) N = 5 

6.41 
6.35 
6.15 
5.83 
5.43 
4.96 
4.46 
3.94 
3.43 
2.94 
2.52 
2.16 
1.89 
1.74 
1.72 
1.84 
2.13 
2.60 
3.28 
4.16 

7558675.50 
7694176.58 
7815212.59 
7920261.67 
8008672.53 
8080664.49 
8137327.48 
8180622.00 
8213379.15 
8239300.64 
8262958.75 
8289796.37 
8326126.99 
8379134.69 
8456874.13 
8568270.59 
8723119.93 
8932088.60 
9206713.65 
9559402.73 

Retrieved 

Error (%) 

-0 .40 
0.44 
1.08 
1.52 
1.73 
1.73 
1.54 
1.19 
0.71 
0.16 
0.40 
0.93 
1.33 
0.61 
1.42 
0.94 
0.02 
1.60 
3.88 
7.01 

— Incremental 
method 

7184872.69 
7371675.43 
7493717.81 
7596454.24 
7689904.72 
7775533.53 
7859641.15 
7940899.93 
8020420.49 
8098888.64 
8176244.61 
8252784.49 
8329871.72 
8402584.80 
8480061.68 
8553180.08 
8628203.50 
8701314.04 
8775467.98 
8847997.32 

Error 
(%) 

5.33 
3.77 
3.07 
2.63 
2.31 
2.11 
1.92 
1.77 
1.65 
1.54 
1.45 
1.36 
1.28 
1.25 
1.15 
1.12 
1.06 
1.02 
0.98 
0.95 
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APPENDIX 

For a Stefan problem in two-dimensional Cartesian system, the interface position can be 
represented as: 

Then, according to References 12 and 24: 

Three-dimensional cases and problems in other coordinate systems can be formulated 
accordingly. 


